

Heat Pipe Condensing Economiser

By
Hussam Jouhara (Brunel)
Mark Boocock (Econotherm)

Steam Generator, China National Offshore Oil Corp, China Sea, China

- GA 6400 smooth pipe 2 stage steam generator
- On-site assembly
- High reliability required for offshore location
- Low footprint required by space limitations
- Instant start up from gas turbine

Gas to Steam

Exhaust Temp In/Out	400 C/250 C
Water/Steam Temp In/Out	50 C/180 C
Exhaust Flow/Steam Rate	130,000/ 8,000 Kg/h
Energy Recovered	6.4 MW
Recovered Energy	£2,100K p/a
Project Cost	£1,200K
Payback Period	7 Months
£/KW recovered	£328

Gas to Air Unit, Automotive, Aluminium Furnace, USA

Gas to Air	
Exhaust Temp In/Out	400 C/266 C
Air Temp In/Out	30 C/293 C
Exhaust/Air Mass Flow	12,000/ 6,374 Kg/h
Energy Recovered	528 KW
Recovered Energy	\$155K p/a
Project Cost	\$150K
Payback Period	16 Months
\$/KW recovered	\$123 (£76)

- 500 kW combustion air pre-heater
- High particulate matter exhaust from furnace
- Low fouling, easy cleaning and maintenance, high reliability
- Unit positioned outside main factory premises
- Customer advised it was not possible by consultants (acid etc)

3 Kiln Heat Recovery, RAK Ceramics, UAE

Gas to Air Exhaust Temp In/Out 235 C/162 C Air Temp In/Out 34 C/160 C Exhaust/Air Mass 41,771/ 27,400 Flow Kg/h Energy Recovered 970 KW Recovered Energy £209K p/a £190K **Project Cost** Payback Period 11 Months £/KW recovered £195

- GA 970 smooth pipe heat exchanger
- 970 kW drier air pre-heater sourcing exhaust from 3 tunnel kilns
- Pre-heated air delivered to multiple usage points
- High particulate matter exhaust from kilns
- Integrated moving plate cleaning system

Heat Pipe Condensing Economiser

Heat Pipe Condensing Economiser in the Food Industry

Site visit summary

- Location and date: ARLUY (Spain), June-2017
- · Heat Source: Indirect radiant oven for biscuit cooking
- Heat sink: pre-heating water used for cleaning manufacturing machines

Proposed Application

I-ThERM

- The proposed HPCE will be installed downstream the gas burner
- The HPCE will preheat the water before it enters the fuelled boiler
- Heat source (gas fire) is available 24/7

Space availability

Space availability

Heating Demand

Cleaning Water specifications

Temperature	10-18°C
Pressure	4bar
Flow rate	15 L/min
Pipe size	1"/2
Duty cycle	2 hrs continuously, 3 times/week (220hrs/year approx.)

HPCE Thermal design

Thermal Design Parameters		
Exhaust mass flow rate	357 kg/h	
Water Mass flow Rate	500 kg/h	
Exhaust average specific heat capacity	0.288 Kcal/Kg.°C	
Water average specific heat capacity	1 Kcal/Kg.°C	
Exhaust inlet temperature	203°C	
Exhaust outlet temperature	50°C	
Water Inlet temperature	20°C	
Water Outlet temperature	45-48°C	
Recovered heat	18.349 kW	

HPCE Mechanical Design

HPCE Mechanical Design

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 680599.

I-ThERM

Sensor Layout

