

Heat pipe based heat exchangers in challenging industrial waste heat recovery applications

Authors:

S. Almahmoud, G. Bianchi, S. A. Tassou, R. Llera, F. Lago, J. J. Arribas Ramirez and H. Jouhara

Researcher:
Sulaiman Almahmoud

Supervised by: Dr Hussam Jouhara

Overview

- The Thermal Design of a Flat Heat Pipe (FHP) for waste heat recovery by radiation high temperature sources
- A theoretical model to predict the thermal performance was built
- The Mechanical Design of the FHP
- The Results obtained from testing the unit in the Laboratory

Aims

 Design a Flat Heat Pipe heat exchanger (FHP) to capture the heat by radiation and convection from High and medium temperature sources

Introduction

Total operating cost

- Energy consumption in steel industry presents 5% world energy consumption
- 40% of total operating cost is for Energy cost
- Challenges:
 - Limited Space, Inaccessibility,
 Temperature Restrictions
 - Payback periods, Project and investment costs

Research Gap

Waste Heat recovery in steel industry

Facility: Wire Rod Mill

Product: Wire Rod

Average Temperature: 500 °C to 600 °C

Flat heat pipe Thermal Design

Flat Heat Pipe Design

FHP Design

FHP Design

FHP Concept

Lab Testing

Lab Testing

Thermocouple Positioning:

- 3 Thermocouples on the bottom header
- 5 Thermocouples on the pipes
- 3 Thermocouples on top header
- Thermocouples to measure the water inlet and water outlet

Lab Testing

Experimental Conditions

Test #	1	2
Heater temperature	500 °C	580 °C
Heater power	25 kW	29 kW
FHP inclination angle from the vertical	12.5°	
Water flow rate	25 L/min = 0.42 kg/s	
Water inlet temperature	10.6 °C	

Electrical heaters Power: Test 1: 25 kW, Test 2: 29 kW

Heater temperature: Test 1:500 °C, Test 2:580 °C

Water Flow rate 25 L/min = 0.42 kg/s

Electrical heaters Power: Test 1: 25 kW, Test 2: 29 kW

Heater temperature: Test 1:500 °C, Test 2:580 °C

Water Flow rate 25 L/min = 0.42 kg/s

Max outlet temperature: 17.3 °C & 17.1 °C

Electrical heaters Power: Test 1: 25 kW, Test 2: 29 kW

Heater temperature: Test 1:500 °C, Test 2:580 °C

Water Flow rate 25 L/min = 0.42 kg/s

Max heat transfer Experimental: 11.4 & 11.5 kW

—Experimental

—Theoretical

Acknowledgements

This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 680599

Thank you

Additional Slides

Testing In Factory

Steel temperature 450 °C, Air flow velocity 6.7-12 m/s, Air temperature 136 °C

Testing In Factory

Hot wire temperature 500 °C to 600 °C, Water flow rate 25 L/min High and low density of steel wires, Distance from the barrier 65 cm and 5 cm

