

1st International Conference on Sustainable Energy and Resource Use in Food Chains

Techno-economic Survey and Design of a Pilot Test Rig for a Trilateral Flash Cycle System in a Steel Production Plant

R. McGinty*, G. Bianchi**, O. Zaher*, S. Woolass***, D. Oliver*, C. Williams**, J. Miller*

*Spirax Sarco, **Brunel University, ***Tata Steel Beaumont Estate Hotel in Windsor, Thursday 20th April,

1st International Conference on Sustainable Energy and Resource Use in Food Chains

Agenda

Opportunity

Technology

Application

Development

Results

The Opportunity

Potential Theoretical Global Waste Heat estimated to be **68.2 TWh**

63% occurs below 100°C

Estimated heat recovery potential for industrial sector lies in the region **10-20TWh** (36-71PJ)

Largest heat recovery potential in **Iron and Steel**

Existing Technology - ORC

Existing Technology - ORC

Shaft Power ORC and Thermal Power (1MW Stream)

Existing Technology - ORC

Trilateral Flash Cycle

Trilateral Flash Cycle

Shaft Power TFC and Thermal Power (1MW Stream)

1st International Conference on Sustainable Energy and Resource Use in Food Chains

Tata Steel Application

Application	Flowrate (m³/h)	Inlet Temperature (°C)	Outlet Temperature (°C)	Thermal Power of Waste Stream (kW)	Number of Hours Running	MWh per year generated
Tata Steel Heat Source A	33,820 (gas)	250	95	1478	7000	833
Tata Steel Heat Source B	63,000 (gas)	200	85	2415	7000	1001
Tata Steel Heat Source C	37.4 (liquid)	70	24	2000	8600	782

Typical Heat Recovery Opportunity 833+ MWh Potential Generation

Large modifications required Undesirable payback

RCUK Centre for Sustainable Energy Use in Food Chains

1st International Conference on Sustainable Energy and Resource Use in Food Chains

Tata Steel Application

Application	Flowrate (m³/h)	Inlet Temperature (°C)	Outlet Temperature (°C)	Thermal Power of Waste Stream (kW)	Number of Hours Running	MWh per year generated
Tata Steel Heat Source A	33,820 (gas)	250	95	1478	7000	833
Tata Steel Heat Source B	63,000 (gas)	200	85	2415	7000	1001
Tata Steel Heat Source C	37.4 (liquid)	70	24	2000	8600	782

Local cooling water available Commercially attractive location Opportunity for low-temp application

Diversion of streams required Currently unmetered

Tata Steel Design Specifics

Stream	Flowrate (kg/s)	Inlet Pressure (bara)	Outlet Pressure (bara)	Inlet Temperature (°C)	Outlet Temperature (°C)
Waste heat stream	10.39	4	3.5	70	24
Refrigerant stream	31.4	5.47	1.18	66	19
Condensing water stream	90.85	4	3.5	12	17

100kW Electrical Power Generation

Thermodynamic Modelling

Heater

Cooler

Pump

Expander

Cycle efficiency

Overall efficiency

$$\dot{m}_{hot}c_{p,hot}(T_8 - T_9) = \dot{m}_{wf}(h_B - h_A)$$

$$\dot{m}_{cold}c_{p,cold}(T_{11} - T_{10}) = \dot{m}_{wf}(h_D - h_C)$$

$$\eta_{pmp} = (h_3 - h_2)/(h_4 - h_2)$$

$$\eta_{\rm exp} = (h_5 - h_6)/(h_5 - h_7)$$

$$\eta_{cy} = \frac{\dot{m}_{wf} \left(\left(h_5 - h_6 \right) - \left(h_4 - h_2 \right) \right)}{\dot{m}_{hot} c_{p,hot} (T_8 - T_9)}$$

$$\eta_{tot} = \eta_{cy} \, \eta_{mech} \, \eta_{el}$$

Thermodynamic Modelling

Pilot Test Rig Development

Initial Testing

Conclusion

Thermodynamic model created

Commercial business cases reviewed and Tata Steel demonstration site chosen

TFC system designed, built and run successfully

Preliminary tests demonstrate ability to reach 6.2kWe from 141.8kWt

Limitation in the control system

Further development under I-ThERM

